Achieving k-anonymity in DataMarts used for gene expressions exploitation
نویسندگان
چکیده
منابع مشابه
Achieving k-anonymity in DataMarts used for gene expressions exploitation
Gene expression profiling is a sophisticated method to discover differences in activation patterns of genes between different patient collectives. By reasonably defining patient groups from a medical point of view, subsequent gene expression analysis may reveal disease-related gene expression patterns that are applicable for tumor markers and pharmacological target identification. When releasin...
متن کاملAchieving k-Anonymity for Associative Classification in Incremental-data Scenarios
When a data mining model is to be developed, one of the most important issues is preserving the privacy of the input data. In this paper, we address the problem of data transformation to preserve the privacy with regard to a data mining technique, associative classification, in an incremental-data scenario. We propose an incremental polynomialtime algorithm to transform the data to meet a priva...
متن کاملAchieving k-Anonymity by Clustering in Attribute Hierarchical Structures
Individual privacy will be at risk if a published data set is not properly de-identified. k-anonymity is a major technique to de-identify a data set. A more general view of k-anonymity is clustering with a constraint of the minimum number of objects in every cluster. Most existing approaches to achieving k-anonymity by clustering are for numerical (or ordinal) attributes. In this paper, we stud...
متن کاملAchieving Multidimensional K-Anonymity by a Greedy Approach
Protecting privacy in microdata publishing is K-Anonymity, Here recoding “models” have been considered for achieving k anonymity[1,2]. We proposes a new multidimensional model, which gives high flexibility. Often this flexibility leads to higher-quality anonymizations, as measured both by general-purpose metrics and more specific notions of query answerability. Like previous multidimensional mo...
متن کاملAchieving Multidimensional K-Anonymity by a Greedy Approach
Protecting privacy in microdata publishing is K-Anonymity, Here recoding “models” have been considered for achieving k anonymity[1,2]. We proposes a new multidimensional model, which gives high flexibility. Often this flexibility leads to higher-quality anonymizations, as measured both by generalpurpose metrics and more specific notions of query answerability. Like previous multidimensional mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Integrative Bioinformatics
سال: 2007
ISSN: 1613-4516
DOI: 10.1515/jib-2007-58